Ecological Risk Assessment of Potential Toxic Elements in Salt Marshes on the East Coast of the Red Sea: Differential Physiological Responses and Adaptation Capacities of Dominant Halophytes

Author:

Ibraheem FaragORCID,Al-Hazmi Nawal,El-Morsy MohamedORCID,Mosa AhmedORCID

Abstract

The impact of the mutual interactions between salinity and the phytoavailability of potential toxic elements (PTEs) on the adaptation of halophytes in their natural habitat is complex and far from clear. Herein, we aimed to evaluate salinity- and PTE-induced oxidative stress in selected halophytes and the antioxidant responses of these plants. For that, five salt marshes were selected, and the physiological responses of dominant halophytes (Tamarix nilotica, Heliotropium crispum, Zygophyllum coccineum, Halopeplus perfoliata, and Avicennia marina) were evaluated against the physicochemical features of their rhizosediments. The tested locations varied in their physicochemical properties and showed various levels of salinity stress and a low fertility status. Distinct variations in ten PTE concentrations were recognized among locations and within plants, with Cr and Co showing the highest ecological risk indices. The high levels of salinity and PTEs were associated with higher foliar levels of malondialdehyde, particularly in A. marina and Z. coccineum. The bio-concentration ratio revealed hyperaccumulating potentials of PTEs by the tested halophytes. Z. coccineum showed effective accumulation of Co, Fe, and Pb, while T. nilotica exhibited effective accumulation of Cu, Cd, and Zn. H. perfoliate had higher accumulation of Cr and Hg, whereas A. marina accumulated a significant amount of Hg, Cd, Zn, and Mn. H. crispum leaves accumulated the highest Ni levels among the tested halophytes. Altogether, our results highlight the potential risk of pollution of the tested areas with PTEs and the efficient physiological adaptation of each of the tested halophytes as a unique biological system. They also reflect the high capabilities of the tested halophytes as phytoextractors of their corresponding PTEs and their potential as efficient tools for phytoremediation of salt- and PTE-affected lands.

Funder

Deanship of Scientific Research, Umm Al-Qura University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3