Computational Solutions Based on Bayesian Networks to Hierarchize and to Predict Factors Influencing Gender Fairness in the Transport System: Four Use Cases

Author:

Molero Gemma DoloresORCID,Poveda-Reyes SaraORCID,Malviya Ashwani KumarORCID,García-Jiménez ElenaORCID,Leva Maria ChiaraORCID,Santarremigia Francisco EnriqueORCID

Abstract

Previous studies have highlighted inequalities and gender differences in the transport system. Some factors or fairness characteristics (FCs) strongly influence gender fairness in the transport system. The difference with previous studies, which focus on general concepts, is the incorporation of level 3 FCs, which are more detailed aspects or measures that can be implemented by companies or infrastructure managers and operators in order to increase fairness and inclusion in each use case. The aim of this paper is to find computational solutions, Bayesian networks, and analytic hierarchy processes capable of hierarchizing level 3 FCs and to predict by simulation their values in the case of applying some improvements. This methodology was applied to data from women in four use cases: railway transport, autonomous vehicles, bicycle sharing stations, and transport employment. The results showed that fairer railway transport requires increased personal space, hospitality rooms, help points, and helpline numbers. For autonomous vehicles, the perception of safety, security, and sustainability should be increased. The priorities for bicycle sharing stations are safer cycling paths avoiding hilly terrains and introducing electric bicycles, child seats, or trailers to carry cargo. In transport employment, the priorities are fair recruitment and promotion processes and the development of family-friendly policies.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3