Simulation of Accelerated Subcritical Flow Profiles in an Open Channel with Emergent Rigid Vegetation

Author:

D’Ippolito AntoninoORCID,Calomino Francesco,Penna NadiaORCID,Dey SubhasishORCID,Gaudio RobertoORCID

Abstract

Even though both fluid mechanics and numerical studies have considerably progressed in the past decades, experimental knowledge remains an important tool for studying the resistance to flow in fluid media where a complex environment dominates the flow pattern. After a comprehensive review of the recent literature on the drag coefficient in open channels with emergent rigid vegetation, this paper presents the results related to 29 experimental accelerated subcritical flow profiles (i.e., M2 type) that were observed in flume experiments with emergent stems in a square arrangement at the University of Calabria (Italy). First of all, we used some of the literature formulas for the drag coefficient, concluding that they were unsatisfactory, probably because of their derivation for uniform or quasi-uniform flow conditions. Then, we tested a recently proposed approach, but when we plotted the drag coefficient versus the stem Reynolds number, the calculated drag coefficients showed an inconclusive behavior to interpret. Thus, we proposed a new approach that considers the calibration of the Manning coefficient for the simulation of the free surface profile, and then the evaluation of the drag coefficients based on the fundamental fluid mechanics equations. With the help of classical dimensional analysis, a regression equation was found to estimate the drag coefficients by means of non-dimensional parameters, which include vegetation density, stem Reynolds number and flow Reynolds number computed using the flow depth as characteristic length. This equation was used to simulate all the 26 observed profiles and, also, 4 experimental literature profiles, and the results were good. The regression equation could be used to estimate the drag coefficient for the M2 profiles in channels with squared stem arrangements, within the range of vegetation densities, flow Reynolds numbers and stem Reynolds numbers of the present study. However, in the case of the three profiles observed by the authors for staggered arrangement, the regression equation gives significantly underestimated flow depths.

Funder

"SILA - An Integrated System of Laboratories for the Environment"

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3