Steady State and Transient Vibration Analysis of an Exponentially Graded Rotor Bearing System Having a Slant Crack

Author:

Sathujoda PrabhakarORCID,Batchu AneeshORCID,Canale GiacomoORCID,Citarella RobertoORCID

Abstract

The dynamic behaviour of a slant-cracked exponentially graded (EG) rotor-bearing system has been investigated using the finite element method for flexural vibrations. A two nodded EG rotor element has been developed based on the Timoshenko beam theory. Local flexibility coefficients (LFCs) of a slant-cracked EG shaft element have been derived using fracture mechanics concepts to develop the stiffness matrix of a cracked EG element. The steady-state and transient vibration responses of cracked and uncracked rotor systems have been simulated using the Houbolt time marching method. When a crack is present in the shaft, the subharmonic frequency peaks are centred on operating speed in the steady-state frequency responses, whereas on critical speed in the transient frequency responses at an interval frequency corresponding to the torsional frequency. It has been found that the crack parameters such as crack depth and location, temperature gradients and torsional frequencies have a significant influence on natural frequencies and dynamic responses, which could be implemented for efficient rotor crack detection methodologies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Modeling and Analysis of Functionally Graded Materials and Structures

2. FGM activities in Japan

3. A critical review of recent research on functionally graded plates

4. A review of functionally graded thick cylindrical and conical shells;Nejad;J. Comput. Appl. Mech.,2017

5. Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method;Simsek;Int. J. Eng. Appl. Sci.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3