Valorization of Pineapple Residues from the Colombian Agroindustry to Produce Cellulose Nanofibers

Author:

Guancha-Chalapud Marcelo A.,Serna-Cock LilianaORCID,Tirado Diego F.ORCID

Abstract

Cellulose nanofiber is the world’s most advanced biomass material. Most importantly, it is biodegradable. In this work, nanofibers were obtained from pineapple leaves, a large solid waste in Colombia, using a combined extraction method (chemical procedures and ultrasound). The native fibers were bleached, hydrolyzed, treated with ultrasound, and characterized by scanning electron microscopy (SEM), infrared analysis (FTIR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). As a comparison, a commercial microcrystalline cellulose sample was analyzed, which demonstrated the efficiency of cellulose extraction. The nanofibers had a diameter and a length of 18 nm and 237 nm, respectively, with a maximum degradation temperature of 306 °C. The analysis showed the efficiency of acid treatment combined with ultrasound to obtain nanofibers and confirmed that pineapple residues can be valorized by this method. These results indicate that lignocellulosic matrices from pineapple leaves have potential application for obtaining polymeric-type composite materials. Due to their morphology and characteristic physical properties, the cellulose nanofibers obtained in this work could be a promising material for use in a wealth of fields and applications such as filter material, high gas barrier packaging material, electronic devices, foods, medicine, construction, cosmetics, pharmacy, and health care, among others.

Funder

ASTIN-SENA

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3