A Novel Generative Model for Face Privacy Protection in Video Surveillance with Utility Maintenance

Author:

Qiu Yuying,Niu Zhiyi,Song Biao,Ma TinghuaiORCID,Al-Dhelaan Abdullah,Al-Dhelaan Mohammed

Abstract

In recent years, the security and privacy issues of face data in video surveillance have become one of the hotspots. How to protect privacy while maintaining the utility of monitored faces is a challenging problem. At present, most of the mainstream methods are suitable for maintaining data utility with respect to pre-defined criteria such as the structure similarity or shape of the face, which bears the criticism of poor versatility and adaptability. This paper proposes a novel generative framework called Quality Maintenance-Variational AutoEncoder (QM-VAE), which takes full advantage of existing privacy protection technologies. We innovatively add the loss of service quality to the loss function to ensure the generation of de-identified face images with guided quality preservation. The proposed model automatically adjusts the generated image according to the different service quality evaluators, so it is generic and efficient in different service scenarios, even some that have nothing to do with simple visual effects. We take facial expression recognition as an example to present experiments on the dataset CelebA to demonstrate the utility-preservation capabilities of QM-VAE. The experimental data show that QM-VAE has the highest quality retention rate of 86%. Compared with the existing method, QM-VAE generates de-identified face images with significantly improved utility and increases the effect by 6.7%.

Funder

National Science Foundation of China

National Key Research and Development Program of China

Deanship of Scientific Research at King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust sensitive-information de-identification framework based on relative-position estimation of objects in closed-circuit television videos;Alexandria Engineering Journal;2024-02

2. Deep Privacy based Face Anonymization for Smart Cities;2023 International Conference on Smart Applications, Communications and Networking (SmartNets);2023-07-25

3. A Multi-Input Fusion Model for Privacy and Semantic Preservation in Facial Image Datasets;Applied Sciences;2023-06-02

4. Face deidentification with controllable privacy protection;Image and Vision Computing;2023-06

5. Research on Secure Interactive System of Video Surveillance Data;2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT);2023-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3