Toward a Practical Digital Twin Platform Tailored to the Requirements of Industrial Energy Systems

Author:

Kasper LukasORCID,Birkelbach FelixORCID,Schwarzmayr PaulORCID,Steindl GernotORCID,Ramsauer DanielORCID,Hofmann RenéORCID

Abstract

Digitalization and concepts such as digital twins (DT) are expected to have huge potential to improve efficiency in industry, in particular, in the energy sector. Although the number and maturity of DT concepts is increasing, there is still no standardized framework available for the implementation of DTs for industrial energy systems (IES). On the one hand, most proposals focus on the conceptual side of components and leave most implementation details unaddressed. Specific implementations, on the other hand, rarely follow recognized reference architectures and standards. Furthermore, most related work on DTs is done in manufacturing, which differs from DTs in energy systems in various aspects, regarding, for example, multiple time-scales, strong nonlinearities and uncertainties. In the present work, we identify the most important requirements for DTs of IES. We propose a DT platform based on the five-dimensional DT modeling concept with a low level of abstraction that is tailored to the identified requirements. We address current technical implementation barriers and provide practical solutions for them. Our work should pave the way to standardized DT platforms and the efficient encapsulation of DT service engineering by domain experts. Thus, DTs could be easy to implement in various IES-related use cases, host any desired models and services, and help get the most out of the individual applications. This ultimately helps bridge the interdisciplinary gap between the latest research on DTs in the domain of computer science and industrial automation and the actual implementation and value creation in the traditional energy sector.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference117 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3