A Multiscale Study of Moisture Influence on the Crumb Rubber Asphalt Mixture Interface

Author:

Wang Lan,Liu YangORCID,Zhang Le

Abstract

In order to study the influence of moisture on the interface of crumb rubber–asphalt (CR) mixture, the interface bonding performance and crack resistance of a crumb rubber–asphalt mixture under dry and wet conditions were studied at three scales. At the macroscale, the characteristics of medium temperature fatigue cracking and low temperature fracture were studied by semi-circular bending tensile test (SCB) on the example of digital image correlation (DIC) technique. At the microscale, the surface energy of CR with basalt and limestone was measured using the contact angle measurement test, and then the adhesion work was calculated and analyzed. At the molecular scale, the model of CR, the model of basalt representative mineral (augite) and limestone representative mineral (calcite) were studied by molecular dynamics simulation. The relationship between these three scales was further explored to reveal the mechanism of the damage of moisture on the interface deterioration of the CR mixture. The results show that moisture has a certain effect on the interface of the CR mixture, which is characterized by macroscopically reducing the crack resistance of the asphalt mixture, microscopically reducing the adhesion ability between the asphalt and the aggregate and weakening the interaction between the asphalt and aggregate molecules at the molecular scale. Molecular dynamics can accurately simulate the deterioration of micro asphalt-aggregate adhesion under the damage of moisture. The decrease in microadhesion leads to the decrease in the crack resistance of the macro-CR mixture.

Funder

The Key Science-Technology Project of Inner Mongolia, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3