Predicting Entrepreneurial Intention of Students: Kernel Extreme Learning Machine with Boosted Crow Search Algorithm

Author:

Zhang Lingling,Fu Yinjun,Wei Yan,Chen HuilingORCID,Xia Chunyu,Cai Zhennao

Abstract

College students are the group with the most entrepreneurial vitality and potential. How to cultivate their entrepreneurial and innovative ability is one of the important and urgent issues facing this current social development. This paper proposes a reliable, intelligent prediction model of entrepreneurial intentions, providing theoretical support for guiding college students’ positive entrepreneurial intentions. The model mainly uses the improved crow search algorithm (CSA) to optimize the kernel extreme learning machine (KELM) model with feature selection (FS), namely CSA-KELM-FS, to study entrepreneurial intention. To obtain the best fitting model and key features, the gradient search rule, local escaping operator, and levy flight mutation (GLL) mechanism are introduced to enhance the CSA (GLLCSA), and FS is used to extract the key features. To verify the performance of the proposed GLLCSA, it is compared with eight other state-of-the-art methods. Further, the GLLCSA-KELM-FS model and five other machine learning methods have been used to predict the entrepreneurial intentions of 842 students from the Wenzhou Vocational College in Zhejiang, China, in the past five years. The results show that the proposed model can correctly predict the students’ entrepreneurial intention with an accuracy rate of 93.2% and excellent stability. According to the prediction results of the proposed model, the key factors affecting the student’s entrepreneurial intention are mainly the major studied, campus innovation, entrepreneurship practice experience, and positive personality. Therefore, the proposed GLLCSA-KELM-FS is expected to be an effective tool for predicting students’ entrepreneurial intentions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3