Abstract
During tunnel construction, the ground properties, initially evaluated, are continuously assessed and verified through back analysis. This procedure generally requires many numerical analyses, so a metamodel based on artificial neural networks has been used to reduce the number of analyses. More datasets can be used to create more reliable metamodels. However, there are no established rules regarding the optimum number of datasets for a reliable metamodel. Metamodels predicting the vertical displacement of the tunnel crown using five ground parameters (unit weight (γ), uniaxial compressive strength (UCS), material constant mi, geological strength index (GSI), and coefficient of lateral pressure (K)), with 3, 4, 6, 8, and 10 values per property, were created to confirm the reliability of the metamodel based on the number of datasets in this study. Metamodels using 6 and 8 values for each property showed 5% and 1% mean absolute percent errors, respectively. These numbers of each of the properties would be appropriate for developing the metamodel. Among the five parameters, only the results of the global sensitivity analyses of GSI and K are higher than 0.9. According to these results, it is verified that assessments based only on these parameters are sufficient in the back analysis.
Funder
National Research Foundation of Korea
Ministry of Land, Infrastructure and Transport
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献