Reliability and Efficiency of Metamodel for Numerical Back Analysis of Tunnel Excavation

Author:

Choi Yo-HyunORCID,Lee Sean SeungwonORCID

Abstract

During tunnel construction, the ground properties, initially evaluated, are continuously assessed and verified through back analysis. This procedure generally requires many numerical analyses, so a metamodel based on artificial neural networks has been used to reduce the number of analyses. More datasets can be used to create more reliable metamodels. However, there are no established rules regarding the optimum number of datasets for a reliable metamodel. Metamodels predicting the vertical displacement of the tunnel crown using five ground parameters (unit weight (γ), uniaxial compressive strength (UCS), material constant mi, geological strength index (GSI), and coefficient of lateral pressure (K)), with 3, 4, 6, 8, and 10 values per property, were created to confirm the reliability of the metamodel based on the number of datasets in this study. Metamodels using 6 and 8 values for each property showed 5% and 1% mean absolute percent errors, respectively. These numbers of each of the properties would be appropriate for developing the metamodel. Among the five parameters, only the results of the global sensitivity analyses of GSI and K are higher than 0.9. According to these results, it is verified that assessments based only on these parameters are sufficient in the back analysis.

Funder

National Research Foundation of Korea

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Back analysis of measured displacements of tunnels;Rock Mech. Rock Eng.,1983

2. Development of a back analysis program for reasonable derivation of tunnel design parameters;J. Korean Tunn. Undergr. Space Assoc.,2013

3. Back-analysis of Shimizu Tunnel No. 3 by distinct element modeling;Tunn. Undergr. Space Technol.,2007

4. Back analysis of the measurements performed during the excavation of a shallow tunnel in sand;Int. J. Numer. Anal. Methods Geomech.,1999

5. Numerical back analysis for estimation of soil parameters in the Resalat Tunnel project;Tunn. Undergr. Space Technol.,2004

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3