Numerical Analysis of a Full-Scale Thermophilic Biological System and Investigation of Nitrate and Ammonia Fates

Author:

Collivignarelli Maria CristinaORCID,Pedrazzani RobertaORCID,Bellazzi Stefano,Carnevale Miino MarcoORCID,Caccamo Francesca MariaORCID,Baldi Marco,Abbà AlessandroORCID,Bertanza GiorgioORCID

Abstract

Thermophilic biological processes proved to be effective in aqueous waste (AW) and high-strength wastewater treatment. In this work, the monitoring of a full-scale aerobic thermophilic biological plant treating various high-strength AW in continuous mode is reported. This paper aims to: (i) provide models to help the AW utility manager in predicting the load of fed pollutants and performances, and (ii) fully investigate nitrogen transformations in biological reactor. Based on the results, the thermophilic sludge in the studied plant was able to degrade Chemical Oxygen Demand (COD) and remove nitrate nitrogen with very high efficiency (79.3% and 97.1, respectively). The monitoring was conducted following a statistical approach and searched for the possible correlations between the input parameters and the efficiency of removal of the plant. Moreover, a multivariate linear regression was carried out highlighting that the yield value of the removal of COD and nitrogen forms, apart from ammonia, was well explained (R2 = 0.9) by the linear regression against the other monitored parameters. As far as nitrification is concerned, there was, on the one hand, an increase in ammonium ions due to the hydrolysis of the organic substance that occurs in the reactor, and on the other hand, a stripping of the same ammoniacal nitrogen in the form of NH3. While nitrates were effectively removed, according to fluorescent in situ hybridization tests, sludge proved to be formed by minute flocs, where bacteria responsible for the oxidation of ammonium and nitrite seem to be unable to grow.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3