Experimental Investigation of Steam Conformance Evolution in Vertical-CSS and Optimization of Profile Improvement Agents

Author:

Lei Chunyan,Wu Yongbin,Yang Guo

Abstract

Production performance of heavy oil deposits in Xinjiang oilfield developed by vertical-well cyclic steam stimulation (CSS) is increasingly challenged by reservoir heterogeneity, which is comprised of original sedimental heterogeneity and steam-induced heterogeneity. In order to understand the impacts of sedimental heterogeneity and high-speed steam injection to steam conformance, and strategies to maximize steam swept volume, a series of experiments were designed and implemented. Three-tube coreflooding experiments were performed to study the steam displacement dynamics under heterogeneous conditions, and a high-temperature plugging agent was developed. The coreflooding experiments indicate that the injection conformance deteriorates once the steam breakthrough occurs in a high-permeability tube, leaving the oil in the medium and low permeability tubes being surpassed. The optimized plugging agent could resist high temperatures over 260 °C and its compressive strength was 13.14 MPa, which is higher than maximal steam injection pressure. The plugging rate of high permeability core was greater than 99.5% at 220–280 °C with a breakthrough pressure gradient over 25 MPa/m. The field test validated its profile improvement feasibility with cyclic oil, 217.6% of the previous cycle. The plugging agent optimized in this study has significant potential for similar heterogeneous reservoirs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Experimental investigation on the steam injection profile along horizontal wellbore

2. Steam Breakthrough Mitigation in Cyclic Steam Stimulation Operations, An East Field, Sultanate of Oman;Alwazeer;Proceedings of the SPE EOR Conference at Oil and Gas West Asia,2018

3. Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir

4. Steam Conformance along Horizontal Well with Different Well Configurations: An Experimental and Numerical Investigation;Dong;Proceedings of the SPE Annual Technical Conference and Exhibition,2019

5. Improvement and Learnings from Reservoir Performance Analysis in a Large Scale Thermal Pilot in North Kuwait;AlAbbasi;Proceedings of the SPE International Heavy Oil Conference and Exhibition,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-situ thermal heavy oil recovery;Sustainable In-Situ Heavy Oil and Bitumen Recovery;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3