Effect of Observation Geometry on Short-Arc Angles-Only Initial Orbit Determination

Author:

Feng Zhao,Yan Changxiang,Qiao Yanfeng,Xu Anlin,Wang Haihong

Abstract

Space-based optical sensors are attracting increasing research attention as they can measure the angle of space targets over large areas, facilitating low-cost, wide-area space target surveillance. Studying the effect of observation geometry on short-arc angles-only initial orbit determination is important for analysing the surveillance capability of systems that use optics as the main means for surveilling different areas of space. In this paper, the initial orbit is calculated based on the unit vector method (UVM); the geometric dilution of precision (GDOP)—derived under the condition that the approximate Lagrangian coefficient and distance are constant—is used as the parameter for the uncertainty distribution of the target orbit solution. A suitable coordinate system transformation is conducted and all possible observation geometry relationships between the target and the sensor are expressed in terms of the angle between orbital planes and the right ascension of the target and sensor in the transformed coordinate system. Simulation experiments show that the GDOP is approximately equal to that obtained statistically through Monte Carlo simulation experiments. The accuracy of the initial orbit solution is poor when the target and optical sensor are at the same right ascension and declination, or in the same orbital plane.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Global Trends in Space Situational Awareness (SSA) and Space Traffic Management (STM);Lal,2018

2. Orbit Determination of Resident Space Objects Using the P-Band Mono-Beam Receiver of the Sardinia Radio Telescope

3. Space-Based Visible Space Surveillance Performance

4. Processing of Space Object Data from Optical Observers for Space Domain Awareness;Lovell;Proceedings of the 2021 IEEE Aerospace Conference (50100),2021

5. Short-Arc Association and Orbit Determination for New GEO Objects with Space-Based Optical Surveillance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3