Prediction of Ozone Hourly Concentrations Based on Machine Learning Technology

Author:

Li DongORCID,Ren XiaofeiORCID

Abstract

To optimize the accuracy of ozone (O3) concentration prediction, this paper proposes a combined prediction model of O3 hourly concentration, FC-LsOA-KELM, which integrates multiple machine learning methods. The model has three parts. The first part is the feature construction (FC), which is based on correlation analysis and incorporates time-delay effect analysis to provide a valuable feature set. The second part is the kernel extreme learning machine (KELM), which can establish a complex mapping relationship between feature set and prediction object. The third part is the lioness optimization algorithm (LsOA), which is purposed to find the optimal parameter combination of KELM. Then, we use air pollution data from 11 cities on Fenwei Plain in China from 2 January 2015 to 30 December 2019 to test the validity of FC-LsOA-KELM and compare it with other prediction methods. The experimental results show that FC-LsOA-KELM can obtain better prediction results and has a better performance.

Funder

Scientific Research Program Funded by Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3