Ornamental Stone Processing Waste Incorporated in the Production of Mortars: Technological Influence and Environmental Performance Analysis

Author:

Moreira Pamella Inácio,de Oliveira Dias Josinaldo,de Castro Xavier GustavoORCID,Vieira Carlos Maurício,Alexandre Jonas,Monteiro Sergio NevesORCID,Ribeiro Rogério PintoORCID,de Azevedo Afonso Rangel GarcezORCID

Abstract

The technological performance and environmental advantages of replacing sand by ornamental stone processing waste (OSPW) in the production of mortars for civil construction were studied. Technological properties associated with the standard consistency index, squeeze flow and bulk densities as well as the determination of water retention and calorimetry analysis were evaluated in the mortars’ fresh state, whereas capillarity tests as well as mechanical resistance by flexural and compression tests were determined in the hardened state for mortars incorporated with 10, 30 and 60 wt.% of OSPW substituting sand. Three different types of Portland Cements were considered in the incorporated mortars production. For these mortars environmental analysis, their corresponding life cycle assessment results were compared to that of conventional waste-free (0% OSPW) control mortar. It was found that the OPSW incorporation acts as nucleation sites favoring a hydration process, which culminates after 28 days of curing in the formation of more stable phases identified as hydrated calcium silicates by X-ray diffraction (XRD) amorphous halo. It was also revealed that both flexural and compression improved resistance for the incorporated mortars after 28 curing days. In particular, the calorimetry and XRD results explained the better mechanical resistance (12 MPa) of the 30 wt.% OSPW incorporated mortar, hardened with Portland Cement V, compared not only to the control, but also to the other incorporated mortars. As for the environmental analysis, the replacement of sand by OSPW contributed to the reduction in associated impacts in the categories of land use (−5%); freshwater eutrophication (−9%); marine eutrophication (−6%) and global warming (−5%).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference45 articles.

1. Effect of Granite Residue Incorporation on the Behavior of Mortars

2. Marble and Stones in the World XXVIII Report—International Situation Production and Interchange;Montani,2017

3. The Brazilian Ornamental Stone Sector;Chiodi,2018

4. Balanço das Exportações e Importações Brasileiras de Materiais Rochosos Naturais e Artificiais de Ornamentação e Revestimento em 2021;Chiodi,2022

5. Determination of Useful Life of Red Ceramic Parts Incorporated with Ornamental Stone Waste

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3