Comparative Analysis of Machine Learning Methods for Predicting Robotized Incremental Metal Sheet Forming Force

Author:

Ostasevicius Vytautas,Paleviciute Ieva,Paulauskaite-Taraseviciene AgneORCID,Jurenas Vytautas,Eidukynas DariusORCID,Kizauskiene Laura

Abstract

This paper proposes a method for extracting information from the parameters of a single point incremental forming (SPIF) process. The measurement of the forming force using this technology helps to avoid failures, identify optimal processes, and to implement routine control. Since forming forces are also dependent on the friction between the tool and the sheet metal, an innovative solution has been proposed to actively control the friction forces by modulating the vibrations that replace the environmentally unfriendly lubrication of contact surfaces. This study focuses on the influence of mechanical properties, process parameters and sheet thickness on the maximum forming force. Artificial Neural Network (ANN) and different machine learning (ML) algorithms have been applied to develop an efficient force prediction model. The predicted forces agreed reasonably well with the experimental results. Assuming that the variability of each input function is characterized by a normal distribution, sampling data were generated. The applicability of the models in an industrial environment is due to their relatively high performance and the ability to balance model bias and variance. The results indicate that ANN and Gaussian process regression (GPR) have been identified as the most efficient methods for developing forming force prediction models.

Funder

Lietuvos Mokslo Taryba

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3