Affiliation:
1. Department of Industrial Engineering, University of Florence, 50121 Florence, Italy
2. IRCCS Fondazione don Carlo Gnocchi ONLUS, 50143 Florence, Italy
3. Neuromuscular Department, AOU Careggi Hospital, 50134 Florence, Italy
Abstract
Multisensory human–machine interfaces for virtual- or augmented-reality systems are lacking wearable actuated devices that can provide users with tactile feedback on the softness of virtual objects. They are needed for a variety of uses, such as medical simulators, tele-operation systems and tele-presence environments. Such interfaces require actuators that can generate proper tactile feedback, by stimulating the fingertips via quasi-static (non-vibratory) forces, delivered through a deformable surface, so as to control both the contact area and the indentation depth. The actuators should combine a compact and lightweight structure with ease and safety of use, as well as low costs. Among the few actuation technologies that can comply with such requirements, pneumatic driving appears to be one of the most promising. Here, we present an investigation on a new type of pneumatic wearable tactile displays of softness, recently described by our group, which consist of small inflatable chambers arranged at the fingertips. In order to objectively assess the perceptual response that they can elicit, a systematic electroencephalographic study was conducted on ten healthy subjects. Somatosensory evoked potentials (SEPs) were recorded from eight sites above the somatosensory cortex (Fc2, Fc4, C2 and C4, and Fc1, Fc3, C1 and C3), in response to nine conditions of tactile stimulation delivered by the displays: stimulation of either only the thumb, the thumb and index finger simultaneously, or the thumb, index and middle finger simultaneously, each repeated at tactile pressures of 10, 20 and 30 kPa. An analysis of the latency and amplitude of the six components of SEP signals that typically characterise tactile sensing (P50, N100, P200, N300, P300 and N450) showed that this wearable pneumatic device is able to elicit predictable perceptual responses, consistent with the stimulation conditions. This proved that the device is capable of adequate actuation performance, which enables adequate tactile perceptual performance. Moreover, this shows that SEPs may effectively be used with this technology in the future, to assess variable perceptual experiences (especially with combinations of visual and tactile stimuli), in objective terms, complementing subjective information gathered from psychophysical tests.
Funder
Italian Ministry of University and Research
Fondazione Cassa di Risparmio di Firenze, Italy
Subject
Control and Optimization,Control and Systems Engineering