Measuring Heat Stress for Human Health in Cities: A Low-Cost Prototype Tested in a District of Valencia, Spain

Author:

Aduna-Sánchez Àlex1,Correcher Antonio2ORCID,Alfonso-Solar David1ORCID,Vargas-Salgado Carlos1ORCID

Affiliation:

1. Institute for Energy Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain

2. Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

Nowadays, the measurement of heat stress indices is of principal importance due to the escalating impact of global warming. As temperatures continue to rise, the well-being and health of individuals are increasingly at risk, which can lead to a detrimental effect on human performance and behavior. Hence, monitoring and assessing heat stress indices have become necessary for ensuring the safety and comfort of individuals. Thermal comfort indices, such as wet-bulb globe temperature (WBGT), Tropical Summer Index (TSI), and Predicted Heat Strain (PHS), as well as parameters like mean radiant temperature (MRT), are typically used for assessing and controlling heat stress conditions in working and urban environments. Therefore, measurement and monitoring of these parameters should be obtained for any environment in which people are constantly exposed. Modern cities collect and publish this relevant information following the Smart City concept. To monitor large cities, cost-effective solutions must be developed. This work presents the results of a Heat Stress Monitoring (HSM) system prototype network tested in the Benicalap-Ciutat Fallera district in Valencia, Spain. The scope of this work is to design, commission, and test a low-cost prototype that is able to measure heat stress indices. The Heat Stress Monitoring system comprises a central unit or receiver and several transmitters communicating via radiofrequency. The transmitter accurately measures wind speed, air temperature, relative humidity, atmospheric pressure, solar irradiation, and black globe temperature. The receiver has a 4G modem that sends the data to an SQL database in the cloud. The devices were tested over one year, showing that radio data transmission is reliable up to 700 m from the receiver. The system’s power supply, composed of a Photovoltaic panel and Lithium-ion batteries, provided off-grid capabilities to the transmitter, with a tested backup autonomy of up to 36 days per charge. Then, indicators such as WBGT, TSI, and MRT were successfully estimated using the data collected by the devices. The material cost of a 12-point network is around EUR 2430 with a competitive price of EUR 190 per device.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. (2022, October 10). NOAA National Centers for Environmental Information Climate at a Glance: Global Mapping, Available online: https://ncdc.noaa.gov/cag/.

2. Global Climate;Ades;Bull. Am. Meteorol. Soc.,2020

3. Miles, L., Agra, R., Sengupta, S., Vidal, A., and Dickson, B. (2021). Nature-Based Solutions for Climate Change Mitigation, IUCN.

4. Temperature, Human Health, and Adaptation: A Review of the Empirical Literature;Deschenes;Energy Econ.,2014

5. Projections of Temperature-Related Excess Mortality under Climate Change Scenarios;Gasparrini;Lancet Planet. Health,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3