Dynamic Framing and Power Allocation for Real-Time Wireless Networks with Variable-Length Coding: A Tandem Queue Approach

Author:

Liu Yuanrui1ORCID,Zhao Xiaoyu2ORCID,Chen Wei1ORCID,Zhang Ying-Jun Angela3ORCID

Affiliation:

1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

2. School of Cyber Science and Engineering, Southeast University, Nanjing 210018, China

3. Department of Information Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China

Abstract

Ensuring high reliability and low latency poses challenges for numerous applications that require rigid performance guarantees, such as industrial automation and autonomous vehicles. Our research primarily concentrates on addressing the real-time requirements of ultra-reliable low-latency communication (URLLC). Specifically, we tackle the challenge of hard delay constraints in real-time transmission systems, overcoming this obstacle through a finite blocklength coding scheme. In the physical layer, we encode randomly arriving packets using a variable-length coding scheme and transmit the encoded symbols by truncated channel inversion over parallel channels. In the network layer, we model the encoding and transmission processes as tandem queues. These queues backlog the data bits waiting to be encoded and the encoded symbols to be transmitted, respectively. This way, we represent the system as a two-dimensional Markov chain. By focusing on instances when the symbol queue is empty, we simplify the Markov chain into a one-dimensional Markov chain, with the packet queue being the system state. This approach allows us to analytically express power consumption and formulate a power minimization problem under hard delay constraints. Finally, we propose a heuristic algorithm to solve the problem and provide an extensive evaluation of the trade-offs between the hard delay constraint and power consumption.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3