Bamboo-Activated Carbon Synthesized by One-Pot Pyrolysis and FeCl2 Activation for the Removal of Cr(VI) in Aqueous Solutions

Author:

Zhong Meijuan1,Liu Xinge1,Ma Jianfeng1,Shang Lili1ORCID

Affiliation:

1. Key Laboratory of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing 100102, China

Abstract

The present study utilized a FeCl2-based environmentally sustainable activation technique to produce activated carbon from bamboo. The research aimed to evaluate the influence of activation temperature on the physical and chemical characteristics of the activated carbon and its ability to adsorb Cr(VI). The results of the experiment indicated that the yield of activated carbon prepared by this method was in the range of 25.5–37.5%, which was comparatively higher than the yield obtained through traditional KOH and steam activation techniques. Moreover, this method resulted in a well-developed pore structure with pore sizes primarily ranging from 0.5 nm to 1.0 nm. A gradual increase in the specific surface area and pore volume was observed with an increase in the activation temperature. The maximum values of 1290.9 m2/g and 0.67 m3/g for specific surface area and pore volume, respectively, were achieved at an activation temperature of 900 °C. The adsorption capacity of Cr(VI) was subject to variation in correspondence with alterations in the pore structure of activated carbon. The maximum adsorption capacity recorded was 13.65 mg/g. This suggested that the adsorption capability was predominantly influenced by the pore configuration. The study of kinetics and isothermal adsorption indicates that the quasi-second-order kinetic model was a more effective approach for characterizing the adsorption process of Cr(VI) on activated carbon. Additionally, the Freundlich model demonstrated superior fitting performance compared to the Langmuir model.

Funder

Fundamental Research Funds for the International Center for Bamboo and Rattan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3