Conditional Optimization of Algorithms for Estimating Distributions of Solutions to Stochastic Differential Equations

Author:

Averina Tatyana1

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia

Abstract

This article discusses an alternative method for estimating marginal probability densities of the solution to stochastic differential equations (SDEs). Two algorithms for calculating the numerical–statistical projection estimate for distributions of solutions to SDEs using Legendre polynomials are proposed. The root-mean-square error of this estimate is studied as a function of the projection expansion length, while the step of a numerical method for solving SDE and the sample size for expansion coefficients are fixed. The proposed technique is successfully verified on three one-dimensional SDEs that have stationary solutions with given one-dimensional distributions and exponential correlation functions. A comparative analysis of the proposed method for calculating the numerical–statistical projection estimate and the method for constructing the histogram is carried out.

Publisher

MDPI AG

Reference26 articles.

1. Kushner, H.J. (1977). Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, Academic Press.

2. Averina, T.A. (2019). Statistical Modeling of Solutions of Stochastic Differential Equations and Systems with Random Structure, SB RAS Publications.

3. Kloeden, P.E., and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations, Springer.

4. Milstein, G.N., and Tretyakov, M.V. (2004). Stochastic Numerics for Mathematical Physics, Springer.

5. Graham, C., and Talay, D. (2013). Stochastic Simulation and Monte Carlo Methods, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rosenbrock-Type Methods for Solving Stochastic Differential Equations;Numerical Analysis and Applications;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3