Seasonality Effect Analysis and Recognition of Charging Behaviors of Electric Vehicles: A Data Science Approach

Author:

Dominguez-Jimenez Juan A.ORCID,Campillo Javier E.,Montoya Oscar DaniloORCID,Delahoz EnriqueORCID,Hernández Jesus C.ORCID

Abstract

Electric vehicles (EVs) presence in the power grid can bring about pivotal concerns regarding their energy requirements. EVs charging behaviors can be affected by several aspects including socio-economics, psychological, seasonal among others. This work proposes a case study to analyze seasonal effects on charging patterns, using a public real-world based dataset that contains information from the aggregated load of the total charging stations of Boulder, Colorado. Our approach targets to forecast and recognize EVs demand considering seasonal factors. Principal component analysis (PCA) was used to provide a visual representation of the variables and their contribution and the correlation among them. Then, twelve classification models were trained and tested to discriminate among seasons the charging load of electric vehicles. Later, a benchmark stage is presented for regression as well as for classification results. For regression models, examined through Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), the random Forest provides better prediction than quasi-Poisson model widely. However, it was observed that for large variations in electric vehicles’ charging load, quasi-Poisson fits better than random forest. For the classification models, evaluated through Accuracy and the Area under the Curve, the Lasso and elastic-net regularized generalized linear (GLMNET) model provided the best global performance with accuracy up to 100% when evaluated on the test dataset. The results of this work offer great insights for enhancing demand response strategies that involve PEV charging regarding charging habits across seasons.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3