Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Region

Author:

Tavakoli-Hashjini EhsanORCID,Piorr AnnetteORCID,Müller KlausORCID,Vicente-Vicente José LuisORCID

Abstract

Miscanthus × giganteus (hereafter Miscanthus) is a perennial crop characterized by its high biomass production, low nutrient requirements, its ability for soil restoration, and its cultivation potential on marginal land. The development of the bioenergy sector in the state of Brandenburg (Germany), with maize as the dominant crop, has recently drawn attention to its negative environmental impacts, competition with food production, and uncertainties regarding its further development toward the state’s bioenergy targets. This study aimed to estimate the potential bioenergy production in Brandenburg by cultivating Miscanthus only on marginal land, thereby avoiding competition with food production in the Berlin-Brandenburg city-region (i.e., foodshed), after using the Metropolitan Foodshed and Self-sufficiency Scenario (MFSS) model. We estimated that by 2030, the Berlin-Brandenburg foodshed would require around 1.13 million hectares to achieve 100% food self-sufficiency under the business as usual (BAU) scenario, and hence there would be around 390,000 ha land left for bioenergy production. Our results suggest that the region would require about 569,000 ha of land of maize to generate 58 PJ—the bioenergy target of the state of Brandenburg for 2030—which is almost 179,000 ha more than the available area for bioenergy production. However, under Miscanthus plantation, the required area would be reduced by 2.5 times to 232,000 ha. Therefore, Miscanthus could enable Brandenburg to meet its bioenergy target by 2030, while at the same time avoiding the trade-offs with food production, and also providing a potential for soil organic carbon (SOC) sequestration of around 255,200 t C yr-1, leading to an improvement in the soil fertility and other ecosystem services (e.g., biodiversity), compared with bioenergy generated from maize.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference93 articles.

1. Bioenergy;Chum,2011

2. Biofuel, land and water: maize, switchgrass orMiscanthus?

3. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2008

4. Assessing the cultivation potential of the energy cropMiscanthus × giganteusfor Germany

5. Biofuels and Biodiversity;Webb,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3