Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System

Author:

San Juan Jayne LoisORCID,Caligan Carlo James,Garcia Maria Mikayla,Mitra Jericho,Mayol Andres PhilipORCID,Sy Charlle,Ubando AristotleORCID,Culaba Alvin

Abstract

Given increasing energy demand and global warming potential, the advancements in bioenergy production have become a key factor in combating these issues. Biorefineries have been effective in converting biomass into energy and valuable products with the added benefits of treating wastewater used as a cultivation medium. Recent developments enable relationships between sewage sludge and microalgae that could lead to higher biomass and energy yields. This study proposes a multi-objective optimization model that would assist stakeholders in designing an integrated system consisting of wastewater treatment systems, an algal-based bioenergy park, and a sludge-based bioenergy park that would decide which processes to use in treating wastewater and sludge while minimizing cost and carbon emissions. The baseline run of the model showed that the three plants were utilized in treating both sludge and water for the optimal answer. Running the model with no storage prioritizes water disposal, while having storage can help produce more energy. Sensitivity analysis was performed on storage costs and demand. Results show that decreasing the demand is directly proportional to the total costs while increasing it can help reduce expected costs through storage and utilizing process capacities. Costs of storage do not cause a huge overall difference in costs and directly follow the change.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Economic Theories Shape Chemical Technology Profile;ChemEngineering;2024-09-09

2. Grey water footprint for evaluating Zefta wastewater treatment plant: a case study;Environmental Technology;2024-04-07

3. A Customer-centric and Operator-centric Approach on Airport Gate Assignments;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

4. Multi-objective optimization of algal biofuel production integrating resource recirculation and quality considerations;Clean Technologies and Environmental Policy;2023-11-22

5. Optimization of Microalgal Biomass Cultivation and Harvesting Considering Culture Crash Events;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3