Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin

Author:

Lin Luotao1,He Jiangpeng2,Zhu Fengqing2ORCID,Delp Edward J.2ORCID,Eicher-Miller Heather A.1ORCID

Affiliation:

1. Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA

2. School of Electrical and Computer Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

New imaging technologies to identify food can reduce the reporting burden of participants but heavily rely on the quality of the food image databases to which they are linked to accurately identify food images. The objective of this study was to develop methods to create a food image database based on the most commonly consumed U.S. foods and those contributing the most to energy. The objective included using a systematic classification structure for foods based on the standardized United States Department of Agriculture (USDA) What We Eat in America (WWEIA) food classification system that can ultimately be used to link food images to a nutrition composition database, the USDA Food and Nutrient Database for Dietary Studies (FNDDS). The food image database was built using images mined from the web that were fitted with bounding boxes, identified, annotated, and then organized according to classifications aligning with USDA WWEIA. The images were classified by food category and subcategory and then assigned a corresponding USDA food code within the USDA’s FNDDS in order to systematically organize the food images and facilitate a linkage to nutrient composition. The resulting food image database can be used in food identification and dietary assessment.

Funder

Eli Lilly and Company

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3