A Hybrid SWIM Data Naming Scheme Based on TLC Structure

Author:

Wu ZhijunORCID,Cui Bohua

Abstract

Aiming at the problem of low interconnection efficiency caused by the wide variety of data in SWIM (System-Wide Information Management) and the inconsistent data naming methods, this paper proposes a new TLC (Type-Length-Content) structure hybrid data naming scheme combined with Bloom filters. This solution can meet the uniqueness and durability requirements of SWIM data names, solve the “suffix loopholes” encountered in prefix-based route aggregation in hierarchical naming, and realize scalable and effective route state aggregation. Simulation verification results show that the hybrid naming scheme is better than prefix-based aggregation in the probability of route identification errors. In terms of search time, this scheme has increased by 17.8% and 18.2%, respectively, compared with the commonly used hierarchical and flat naming methods. Compared with the other two naming methods, scalability has increased by 19.1% and 18.4%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3