Chemical and Ecotoxicological Assessment of Agricultural Drainage Water from a Maize Crop Area: A Case Study in the Tejo Basin (Portugal)

Author:

Palma Patrícia123ORCID,Catarino Adriana12ORCID,Silva Emília4ORCID,Alvarenga Paula4ORCID

Affiliation:

1. Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, 7801-295 Beja, Portugal

2. ICT, Institute of Earth Sciences, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal

3. GeoBioTec, NOVA School of Science and Technology, Campus da Caparica, 2829-516 Caparica, Portugal

4. LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal

Abstract

The use of agricultural drainage water (ADW) in irrigation is a great challenge, improving water use efficiency, nutrient circularity, and avoiding surface and ground-water contamination. The objective of this study was to evaluate the chemical and ecotoxicological characteristics of an ADW to analyze the safety of its reuse. An irrigated area with maize crops was selected (Tejo Basin, Portugal), where a subsurface structure for the recovery of ADW was installed, collecting the drainage in a pond and recycling it for crop irrigation. Water was collected monthly during the irrigation campaign of 2021 (April to August). Three herbicides and two metabolites were quantified, reaching a maximum concentration of 0.74 µg L−1 for S-metolachlor and 0.48 µg L−1 for terbuthylazine. The lethal bioassays did not detect toxicity, except for the sample collected in August toward Vibrio fisheri (EC50 = 25.2%). The samples were not toxic to Pseudokirchneriella subcapitata, with a growth inhibition rate of less than 10%. The low lethal and sublethal effects may be ascribed to the high nutrient concentration (e.g., 1.76 mg P L−1 and 98.9 mg NO3− L−1, in July) that could have masked toxic effects. Ecotoxicological responses support the option of ADW reuse in irrigation, offering a safe and sustainable solution for water and nutrient management.

Funder

LEAF

ICT

FitoFarmGest Operational Group

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3