Epidermal-Derived Hedgehog Signaling Drives Mesenchymal Proliferation during Digit Tip Regeneration

Author:

Maan Zeshaan N.ORCID,Rinkevich Yuval,Barrera Janos,Chen KellenORCID,Henn Dominic,Foster DeshkaORCID,Bonham Clark Andrew,Padmanabhan Jagannath,Sivaraj Dharshan,Duscher Dominik,Hu MichaelORCID,Yan Kelley,Januszyk Michael,Longaker Michael T.,Weissman Irving L.,Gurtner Geoffrey C.

Abstract

Hand injuries often result in significant functional impairments and are rarely completely restored. The spontaneous regeneration of injured appendages, which occurs in salamanders and newts, for example, has been reported in human fingertips after distal amputation, but this type of regeneration is rare in mammals and is incompletely understood. Here, we study fingertip regeneration by amputating murine digit tips, either distally to initiate regeneration, or proximally, causing fibrosis. Using an unbiased microarray analysis, we found that digit tip regeneration is significantly associated with hair follicle differentiation, Wnt, and sonic hedgehog (SHH) signaling pathways. Viral over-expression and genetic knockouts showed the functional significance of these pathways during regeneration. Using transgenic reporter mice, we demonstrated that, while both canonical Wnt and HH signaling were limited to epidermal tissues, downstream hedgehog signaling (through Gli) occurred in mesenchymal tissues. These findings reveal a mechanism for epidermal/mesenchyme interactions, governed by canonical hedgehog signaling, during digit regeneration. Further research into these pathways could lead to improved therapeutic outcomes after hand injuries in humans.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toeing the line between regeneration and fibrosis;Frontiers in Cell and Developmental Biology;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3