Efficient Regeneration of Graphite from Spent Lithium-Ion Batteries through Combination of Thermal and Wet Metallurgical Approaches

Author:

Yu Riquan1,Zhou Changyou1,Zhou Xiangyang1,Yang Juan1,Tang Jingjing1,Zhang Yaguang1ORCID

Affiliation:

1. School of Metallurgy and Environment, Central South University, Changsha 410083, China

Abstract

With the large-scale application of lithium-ion batteries (LIBs) in various fields, spent LIBs are considered one of the most important secondary resources. Few studies have focused on recycling anode materials despite their high value. Herein, a new efficient recycling and regeneration method of spent anode materials through the combination of thermal and wet metallurgical approaches and restored graphite performance is presented. Using this method, the lithium recycling ratio from spent anode materials reaches 87%, with no metal impurities detected in the leaching solution. The initial Coulombic efficiency of the recycled graphite (RG) materials is 90.5%, with a reversible capacity of 350.2 mAh/g. Moreover, RG shows better rate performance than commercial graphite. The proposed method is simple and efficient and does not involve toxic substances. Thus, it has high economic value and application potential in graphite recycling from spent LIBs.

Funder

Youth Science Funds of Hunan Province of China

Unveiling and Leading Projects of Key Manufacturing Products in Hunan Province of China

2024 Major Science and Technology Program of Yunnan Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3