Toward Metallized Pellets for Steelmaking by Hydrogen Cooling Reduction: Effect of Gas Flow Rate

Author:

Fan Wanlong1,Peng Zhiwei1ORCID,Tian Ran1,Luo Guanwen1,Yi Lingyun1,Rao Mingjun1ORCID

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

Abstract

This study proposed a strategy to prepare metalized pellets for direct steelmaking by hydrogen cooling reduction (HCR) of iron ore pellets with a focus on the effect of H2 flow rate on the process. It was demonstrated that increasing H2 flow rate could effectively enhance the reduction performance of iron ore pellets. However, due to the influence of the countercurrent diffusion resistance of gas molecules, too high H2 flow rate no longer promoted the reduction of the pellets when the maximum reduction rate was reached. The reduction swelling index (RSI) of the pellets initially increased and then decreased with increasing H2 flow rate. This change was associated with the decreased content of Fe2SiO4 in the metalized pellets and the changes in porosity and iron particle size. The compressive strength (CS) decreased continuously, showing a sharp decline when the H2 flow rate reached 0.6 L/min. It was attributed to the significant increases in porosity and average pore size of the metalized pellets, with the presence of surface cracks. When the H2 flow rate was 0.8 L/min, the metalized pellets had the optimal performance, namely, reduction degree of 91.45%, metallization degree of 84.07%, total iron content of 80.67 wt%, RSI of 4.66%, and CS of 1265 N/p. The findings demonstrated the importance of controlling the H2 flow rate in the preparation of metallized pellets by HCR.

Funder

China Baowu Low Carbon Metallurgy Innovation Foundation

Hunan Provincial Natural Science Foundation of China

Hunan Provincial Key Research and Development Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3