Biochar/Biopolymer Composites for Potential In Situ Groundwater Remediation

Author:

Petrangeli Papini Marco1ORCID,Cerra Sara1ORCID,Feriaud Damiano1,Pettiti Ida1,Lorini Laura1ORCID,Fratoddi Ilaria123ORCID

Affiliation:

1. Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

2. Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

3. Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

Abstract

This study explores the use of pine wood biochar (BC) waste gasified at 950 °C as fillers in polymer matrices to create BC@biopolymer composites with perspectives in groundwater remediation. Four biochar samples underwent different sieving and grinding processes and were extensively characterized via UV–Vis, FTIR, and FESEM–EDS, highlighting the fact that that BCs are essentially graphitic in nature with a sponge-like morphology. The grinding process influences the particle size, reducing the specific surface area by about 30% (evaluated by BET). The adsorption performances of raw BC were validated via an adsorption isotherm using trichloroethylene (TCE) as a model contaminant. A selected BC sample was used to produce hydrophilic, stable polymer composites with chitosan (CS), alginate (ALG), potato starch (PST), and sodium carboxymethylcellulose (CMC) via a simple blending approach. Pilot sedimentation tests over 7 days in water identified BC@PST and BC@CMC as the most stable suspensions due to a combination of both hydrogen bonds and physical entrapment, as studied by FTIR. BC@CMC showed optimal distribution and retention properties without clogging in breakthrough tests. The study concludes that biopolymer-based biochar composites with improved stability in aqueous environments hold significant promise for addressing various groundwater pollution challenges.

Funder

Sapienza University of Rome funding Grant Ateneo Ricerca 2022

Sapienza University of Rome funding Grant Progetti per Avvio alla Ricerca-Tipo 2 2023

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3