Temperature and Circulation Dynamics in a Small and Shallow Lake: Effects of Weak Stratification and Littoral Submerged Macrophytes

Author:

Torma Péter,Wu Chin

Abstract

In this paper, the effects of littoral submerged macrophytes on weak stratification conditions in a small and shallow lake are investigated. Diverse submerged macrophytes occupying a large portion of the littoral zone act as resistance to water motions and affect lake hydrodynamics. Strong solar radiation and mild wind forcing typically occurring during the summer season result in weak stratification characterized by a diurnal cycle with a temperature differential of 1–3 °C. Temperature and circulation dynamics of a small and shallow lake are depicted by extensive field measurements and a three-dimensional non-hydrostatic model with a generic length scale (GLS) approach for the turbulence closure and drag forces induced by macrophytes. Results show that the effects of macrophytes on velocity profiles are apparent. In the pelagic area, the circulation patterns with and without macrophytes are similar. The velocity profile is generally characterized by a two-layer structure with the maximum velocity at both the water surface and the mid-depth. In contrast, inside the littoral zone, the mean flow is retarded by macrophytes and the velocity profile is changed to only one maximum velocity at the surface with a steeper decrease until 2.0 m depth and another slight decrease to the lake bottom. From the whole lake perspective, littoral macrophytes dampen the horizontal water temperature difference between the upwind side and download side of the lake. Macrophytes promote a stronger temperature stratification by retarding mean flows and reducing vertical mixing. Overall, this study shows that the temperature structures and circulation patterns under weak stratification conditions in a small and shallow lake are strongly affected by littoral vegetation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3