Modeling of the Variation Propagation for Complex-Shaped Workpieces in Multi-Stage Machining Processes

Author:

Yang Fuyong1ORCID,Zhang Peiyue2,Zhang Xiaobing1,Cao Juyong1,Xing Yanfeng1

Affiliation:

1. School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. The 5th Electronic Institute of MIIT EAST CHINA, Suzhou 215000, China

Abstract

Variation prediction and quality control for complex-shaped workpieces in automotive and aerospace fields with multi-stage machining processes have drawn significant attention because of the widespread application and increasing diversity of these kinds of workpieces. To finish the final workpieces with complex shapes, multiple setups and operations are often applied in machining processes. However, sources of geometric error, such as fixture error, datum error, machine tool path error, and the dimensional quality of the product, interact complicatedly at different stages. These complex interactions pose significant challenges to final product error prediction and reduction. Manufacturing error prediction based on stream of variation is an effective way to control the machining quality. However, there are few integrated models that can describe the interactions among types of geometric error sources from different stages for different kinds of complex workpieces. This paper proposes a modified error prediction model to systematically capture the interactions of different error sources among different operations for complex-shaped workpieces in multi-stage machining processes. Using differential motion vectors, the connection of all key variations from machine, fixture, and workpiece is established. This modified model can not only handle general fixture layouts for complex workpieces, but also introduce machining-induced variations. Based on this model, the main error sources identification method and error compensation method are proposed. In order to evaluate the effectiveness of the proposed method, engine blocks are used to be machined as an example. Compared with a machining process without a compensating strategy, the average machining error of the key feature is reduced by 80.5% after compensating for the main error sources.

Funder

Open Project of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures

Natural Science Foundation of Shanghai

Shanghai Doctoral Unit Cultivation Project—Mechanical Engineering Doctoral Program

Science and Technology Development Fund of Pudong New Area

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3