Modeling Lane-Changing Behavior Based on a Joint Neural Network

Author:

Dong Changyin,Liu YunjieORCID,Wang HaoORCID,Ni Daiheng,Li Ye

Abstract

This paper proposes a joint neural network model to imitate lane-changing behaviors. Specifically, lane-changing decision-making process is captured by probabilistic neural network (PNN) and lane-changing decision-making process is learned by back-propagation neural network (BPNN). The link between the two neural networks is the target gap for lane-changing. After testing and calibrating the joint neural network model, simulation experiments are designed to study heterogeneous traffic flow at an off-ramp bottleneck. Numerical simulations are conducted in various traffic scenarios with different market penetration rates (MPRs) of intelligent vehicles (IVs) and proportions of exit vehicles. Finally, the performance of heterogeneous flows is evaluated from the perspectives of average speed, road capacity, and safety. The results show that joint neural network can accurately predict the gap types chosen for lane changes and vehicle trajectory during lane-changing. For the traffic system, road capacity obtains the least value when the MPR of IVs is 50%. Moreover, frequent lane-changing movements upstream the off-ramp bottleneck determine the areas at greatest risk. However, when MPR of IVs is over 80% or proportion of exit vehicles is below 15%, both traffic efficiency and safety can be significantly improved. This work provides some insights into the application of machine learning algorithms to traffic flow modeling, and conducts quantitative analysis on the impact of key parameters on traffic systems. Findings of this work can support management and operation of automated highway systems in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3