Design and Experiments of Electro-Hydrostatic Actuator for Wheel-Legged Robot with Fast Force Control Response

Author:

Zhao Huipeng1,Zhou Junjie12,Ma Sanxi1,Du Shanxiao1,Liu Hui1,Han Lijin1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China

Abstract

The wheel-legged robot combines the functions of wheeled vehicles and legged robots: high speed and high passability. However, the limited performance of existing joint actuators has always been the bottleneck in the actual applications of large wheel-legged robots. This paper proposed a highly integrated electro-hydrostatic actuator (EHA) to enable high-dynamic performance in giant wheel-legged robots (>200 kg). A prototype with a high force-to-weight ratio was developed by integrating a micropump, a miniature spring accumulator, and a micro-symmetrical cylinder. The prototype achieves a large output force of more than 9400 N and a high force-to-weight ratio of more than 2518 N/kg. Compared with existing EHA-based robots, it has a higher force-to-weight ratio and can bear larger loads. A detailed EHA model was presented, and controllers were designed based on sliding mode control and PID methods to control the output position and force of the piston. The model’s accuracy is improved by identifying uncertain parameters such as friction and leakage coefficient. Finally, both simulations and experiments were carried out. The results verified the fast response of force control (step response within 50 ms, the force tracking control frequency about 6.7 Hz) and the developed EHA’s good potential for future large wheel-legged robots.

Funder

National Key Laboratory of Vehicular Transmission of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3