Research on the Grinding Performance of an Electroplated Coarse-Grained Diamond Grinding Wheel by Dressing

Author:

Xia Yongqi1,Deng Shibo2,Wu Mingtao2,Ni Binkun3

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Sichuan Precision and Ultra-Precision Machining Engineering Technology Center, Chengdu 610200, China

3. Luoyang LYC Bearing Corporation, Luoyang 471003, China

Abstract

The coarse-grained electroplated diamond grinding wheels is increasingly favored in precision grinding of hard and brittle materials owing to its high material removal efficiency, high wear resistance and steady surface contour accuracy. However, how to determine whether the dressed grinding wheel surface topography can achieve the desired precision ground surface quality is still a huge challenge to this day. In this paper, a novel numerical simulation model, which was established basing on the statistical features of actual electroplated coarse-grained diamond grinding wheel and the kinetics of the grinding process, was proposed for theoretically and thoroughly studying the influence of the surface dressing depth of coarse-grained electroplated diamond grinding wheel on ground workpiece surface morphology. At first, the statistical features of actual electroplated coarse-grained diamond grinding wheel was acquired and a novel numerical grinding wheel surface model was established. Subsequently, a numerical ground workpiece surface simulation model was also developed. And then, the evolving mechanism of the grinding wheel surface topography with the dressed wheel surface abrasive grain protrusion height was theoretically studied by numerical simulation. Moreover, the influence of the wheel surface abrasive grain protrusion height on the ground surface roughness was thoroughly researched by means of theoretical model and experiments. The simulation and experiments results in this paper indicated that precision ground workpiece surface with nano-scale surface roughness can be acquired by grinding with a dressed grinding wheel with a certain abrasive grain protrusion height of 25% of the typical abrasive size. Comparing with the undressed grinding wheel (grinding wheel with original surface topography and not be dressed), the surface roughness Sa and Sq of the surface ground with a well-dressed wheel can achieving a significant decrease of 97.75–99.77% and 97.57–99.73%, respectively. Therefore, carefully dressing the electroplated coarse-grained diamond grinding wheel is of great significance for obtaining a precision ground workpiece surface quality.

Funder

Young Fund of National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3