Hydrodynamic Bearing Structural Design of Blood Pump Based on Axial Passive Suspension Stability Analysis of Magnetic–Hydrodynamic Hybrid Suspension System

Author:

Shen Peng,Wang Yiwen,Chen Yun,Fu Pengqiang,Zhou Lijie,Liu Lijia

Abstract

Rotor suspension stability is one of the important performance indexes of a blood pump and the basis of determining whether the blood pump can be used in a clinic. Compared with the traditional magnetic suspension system, a single-winding, bearingless motor has the advantages of a compact structure, simple control system and low power consumption. In this pursuit, the present study aimed to envisage and design the magnetic suspension system coupled with a single-winding bearingless motor and permanent magnet bearings, establish the theoretical models of axial force and electromagnetic torque, and calculate the stiffness of the magnetic suspension system at the equilibrium point. Addressing the problem of the negative axial stiffness of the magnetic suspension system being negative, which leads to the instability of the suspension rotor, the hydrodynamic bearing structure was proposed and designed, and the critical stiffness to realize the stable suspension of the rotor was obtained based on the stability criterion of the rotor dynamics model. The optimal structural parameters of the hydrodynamic bearing are selected by integrating various factors based on the solution of the Reynolds equation and a stiffness analysis. Furthermore, the vibration experiment results proved that the blood pump rotor exhibited a good suspension stability, and the maximum offset under the impact external fluid was no more than 2 μm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3