Fault Prediction of On-Board Train Control Equipment Using a CGAN-Enhanced XGBoost Method with Unbalanced Samples

Author:

Liu Jiang,Xu Kangzhi,Cai Baigen,Guo Zhongbin

Abstract

On-board train control equipment is an important component of the Train Control System (TCS) of railway trains. In order to guarantee the safe and efficient operation of the railway system, Predictive Maintenance (PdM) is significantly required. The operation data of the on-board equipment allow us to build fault prediction models using a data-driven approach. However, the problem of unbalanced fault samples makes it difficult to achieve the expected modeling performance. In this paper, a Conditional Generative Adversarial Network (CGAN) is adopted to solve the unbalancing problem by generating synthetic samples corresponding to specific fault labels that belong to the minority classes. With this basis, a CGAN-enhanced eXtreme Gradient Boosting (XGBoost) solution is presented for training the fault prediction models. From the pre-processing to the field data, artificial fault samples are generated and integrated into the training sample sets, and the XGBoost models can be derived with multiple decision trees. Both the feature importance sequence list and the knowledge graph are derived to describe the characteristics obtained by the models. Filed data sets from practical operation are utilized to validate the proposed solution. By comparison with conventional machine learning algorithms, it can be found that higher accuracy, precision, recall, and F1 scores, which are up to 99.76%, can be achieved by the proposed solution. By involving the CGAN strategy, the maximum enhancement to the F1 score with the XGBoost approach reaches 6.13%. The advantages of the proposed solution show great potential in implementing equipment health management and intelligent condition-based maintenance.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference33 articles.

1. Standard analysis for transfer delay in CTCS-3;Cao;China J. Electron.,2017

2. Impact of signalling system on capacity—Comparing legacy ATC, ETCS level 2 and ETCS hybrid level 3 systems;Ranjbar;J. Rail Transp. Plan. Manag.,2022

3. Incipient fault detection for air brake system of high-speed trains;Sang;IEEE Trans. Control Syst. Technol.,2021

4. Edge computing-aided framework of fault detection for traction control systems in high-speed trains;Chen;IEEE Trans. Veh. Technol.,2020

5. Multidimensional feature fusion and ensemble learning-based fault diagnosis for the braking system of heavy-haul train;Liu;IEEE Trans. Ind. Inform.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3