A Novel Hole System Dimension Analysis Tool Based on the Combination of the Process Path and Design Path

Author:

Ma Xingyu1,Yang Jiong1,Xue Shuncong1,Wang Zhichao1

Affiliation:

1. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

In the calculation of process dimensions in the machining of porous parts, the traditional method is complicated in the establishment of the dimensional chain, it is easy to make mistakes in the judgment of increasing and decreasing loops, and there is difficulty in the calculation process; thus, this paper puts forward a method that combines the process path with the design path to analyze the hole system dimensions in response to these problems. First of all, the combination of the process path and design path is used to establish a system of vector equations and, according to the system of vector equations, to establish a matrix model to calculate the process dimensions based on the system of vector equations to construct the process dimensional chain and the dimensional chain function; then, the principle of differentiation is used to carry out a tolerance analysis of the process dimensions, which avoids the drawing of dimensional chain diagrams and the judgement of the incremental/decremental loops. Finally, the development of a process dimension analysis tool for hole system dimensions is completed based on CATIA CAA. In order to verify the effectiveness of the proposed method, the analysis tool was used to solve the three labeling methods of the hole system dimensions of porous parts and compared with the results calculated using the traditional method, and it was found that some of the tolerance results obtained by the proposed method were enlarged by about 50%, which is more in line with the actual production situation. Finally, in order to verify the accuracy of the tool’s calculation results, three porous parts were machined according to the process dimensions and tolerances calculated by the tool, and the center distance of each hole was measured by a coordinate meter. These measurements were compared and analyzed with the design dimensions specified in the engineering drawings, and it was found that the center distances of the holes were in full compliance with the design requirements.

Funder

National Key Research and Development Industrial Software

Publisher

MDPI AG

Reference24 articles.

1. Groover, M.P. (2020). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, John Wiley & Sons.

2. A comprehensive review of tolerancing research;Hong;Int. J. Prod. Res.,2002

3. Meguid, S.A. (1987). Integrated Computer-Aided Design of Mechanical Systems, Springer Science & Business Media.

4. Process tolerance allocation in angular tolerance charting;Xue;Int. J. Prod. Res.,2004

5. An alternative method to tolerance transfer for parts with 2D blueprint;Rosado;Int. J. Prod. Res.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3