Film Cooling Performance of a Cylindrical Hole with an Upstream Crescent-Shaped Block in Linear Cascade

Author:

Zhang ChaoORCID,Dong Junhuai,Wang ZhanORCID,Zhang Pengfei,Tong Zhiting,Zhang Yue

Abstract

Recent works have already demonstrated that placing a crescent-shaped block upstream of a cylindrical hole could enhance the cooling performance of flat-plate films. The flow and cooling performance of the crescent-shaped block applied over the pressure and suction sides of the blade is investigated in this article. The Reynolds-averaged Navier-Stokes equations are solved with the Shear Stress Transport model for turbulence closure. Two optimized blocks are obtained from the flat-plate film cooling in our previous work, and two positions on the pressure and suction sides are tested. The blowing ratio varies from 0.5 to 2.0. The results show that when the block is applied on the blade surface, it yields a different cooling performance compared with the flat plate due to different geometry curvature and pressure gradient. The cooling performance on the suction side is slightly higher than on that on the pressure side, while the aerodynamic loss on the suction side is much higher. For the different blocks, the qualitative change of cooling performance vs. blowing ratios held on turbine blades is quite close to that of flat plates. The optimized smaller block in the flat plate provides better cooling performance at lower blowing ratios, while the larger block is superior when the blowing ratios are higher.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3