Real-Time Neural Classifiers for Sensor and Actuator Faults in Three-Phase Induction Motors

Author:

Sanchez Oscar D.ORCID,Martinez-Soltero GabrielORCID,Alvarez Jesus G.ORCID,Alanis Alma Y.ORCID

Abstract

The main steps involved in a fault-tolerant control (FTC) scheme are the detection of failures, isolation and reconfiguration of control. Fault detection and isolation (FDI) is a topic of interest due to its importance for the controller, since it provides the necessary information to adjust and mitigate the effects of the fault. Generally, the most common failures occur in the actuator or in sensors, so this article proposes a novel model-free scheme for the detection and isolation of sensor and actuator faults of induction motors (IM). The proposed methodology performs the task of detecting and isolating faults over data streams just after the occurrence of the failure of an induction motor (IM), by the occurrence of either disconnection, degradation, failure, or connection damage. Our approach proposes deep neural networks that do not need a nominal model or generate residuals for fault detection, which makes it a useful tool. In addition, the fault-isolation approach is carried out by classifiers that differentiate characteristics independently of the other classifiers. The long short-term memory (LSTM) neural network, bidirectional LSTM, multilayer perceptron and convolutional neural network are used for this task. The proposed sensors’ and actuator’s fault detection and isolation scheme is simple. It can be applied to various problems involving fault detection and isolation schemes. The results show that deep neural networks are a powerful and versatile tool for fault detection and isolation over data streams.

Funder

CONACyT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3