A Terminal Residual Vibration Suppression Method of a Robot Based on Joint Trajectory Optimization

Author:

Liang Liang12ORCID,Wu Chengdong3ORCID,Liu Shichang12

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. SIASUN Robot & Automation Co., Ltd., Shenyang 110168, China

3. Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169, China

Abstract

Vibration problems have become one of the most important factors affecting robot performance. To this end, a terminal residual vibration suppression method based on joint trajectory optimization is proposed to improve the accuracy and stability of robot motion. Firstly, based on the characteristics of the friction nonlinearity due to joint coupling and physical feasibility of dynamic parameters, a semidefinite programming method is used to identify dynamic parameters with actual physical meaning, thereby obtaining an accurate dynamic model. Then, based on the result of the residual vibration time domain analysis, a joint trajectory optimization model with the goal of minimizing joint tracking error is established. The Chebyshev collocation method is used to discretize the optimization model. The dynamic model is used as the optimization constraint, and barycentric interpolation is used to obtain the optimized joint motion trajectory. Finally, industrial robot experiments prove that the vibration suppression method proposed in this article can reduce the maximum acceleration amplitude of residual vibration by 62% and the vibration duration by 71%. Compared with the input shaping method, the method proposed in this paper can reduce the terminal residual vibration more effectively and ensure the consistency of running time and trajectory.

Funder

National Key Research and Development Plan: Heavy Duty Industrial Robot Development and Application

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3