Improved Mesh Stiffness Method and Vibration Analysis of a Planetary Gear System with a Spatial Tooth Crack

Author:

Yang YiORCID,Hu NiaoqingORCID,Cheng Zhe,Hu Jiao,Zhang LunORCID

Abstract

Dynamic modeling and analysis are generally regarded as effective tools to investigate the vibration characteristics and fault mechanisms of planetary gear systems with a tooth crack fault. In actual gearboxes, the tooth crack is always a three-dimensional spatial surface, but it was usually simplified as a two-dimensional domain in most previous studies. In this paper, the tooth crack is modeled as a spatial shape that propagates along the crack depth, length and height directions simultaneously. Based on the potential energy principle, an improved analytical method is proposed to calculate the time-varying mesh stiffness (TVMS) of a planetary gear system with a spatial tooth crack. Furthermore, a coupled translational–torsional dynamic model is established for a planetary gear system including time-varying parameters and nonlinear factors. Numerical simulations are conducted to reveal the influences of the spatial crack propagation on the TVMS and vibration responses. In addition, an experimental study is carried out on a gear transmission test rig to verify the proposed analytical method and dynamic model. The mesh stiffness calculation method of the spatial cracked tooth and corresponding analysis results in this study might provide references to detect tooth crack faults in planetary gear systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Defense Industrial Technology Development Program

Project of JCJQ-JJ

Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3