Advanced Machining of Joint Implant UHMWPE Inserts

Author:

Piska MiroslavORCID,Urbancova Katerina

Abstract

The modern orthopaedic implants for applications in hips, knees, shoulders, and spines are composed of hard metal alloys or ceramics and a tribological sub-component that is made of soft materials, with good frictional properties—e.g., UHMWPE (Ultra High Molecule Weight Polyethylene). The UHMWPE implants need to be machined into their final shape after the polymerization and consolidation into a blank profile or near net shaped implant. Thus, machining is a crucial technology that can generate an accurate and precise shape of the implant that should comply with the joints’ function. However, the machining technology can affect the topography and integrity of the surface, transmitted stresses, and resistance to wear. Technology, cutting tools, and cutting conditions can have an impact on the physical and mechanical properties of the entire implant and its longevity. This paper shows an effective and competitive technology for acquiring high-quality insert shape, dimensions, and surface, needed especially for customized implants.

Funder

PID

Brno University of Technology, Faculty of Mechanical Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference36 articles.

1. World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals, 2021.

2. Píška, M., and Bučková, K. On the analysis of Ti6Al4V-ELI powder material, electron beam technology and machining on quality of machined implant surfaces. Proceedings of the European Advanced Material Congress, 2018.

3. Píška, M., and Bučková, K. On the machining of Ti-6Al-4V ELI alloy made with EBM technology for implants. Proceedings of the UTIS 9th International Congress on Machining Congress Proceedings, 2018.

4. Advanced knee implants for the third millenium;Píška;J. Mater. Sci. Eng.,2019

5. Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces;Píška;Adv. Mater. Lett.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3