Euler Representation-Based Structural Balance Discriminant Projection for Machinery Fault Diagnosis

Author:

Zhang Maoyan1,Zhu Yanmin2,Su Shuzhi13,Fang Xianjin13,Wang Ting1

Affiliation:

1. School of Computer Science and Engineering, Anhui University of Science & Technology, Huainan 232001, China

2. School of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, China

3. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230031, China

Abstract

Fault diagnosis methods are usually sensitive to outliers and it is difficult to obtain and balance global and local discriminant information, which leads to poor separation between classes of low-dimensional discriminant features. For this problem, we propose an Euler representation-based structural balance discriminant projection (ESBDP) algorithm for rotating machine fault diagnosis. First, the method maps the high-dimensional fault features into the Euler representation space through the cosine metric to expand the differences between heterogeneous fault samples while reducing the impact on outliers. Then, four objective functions with different structure and class information are constructed in this space. On the basis of fully mining the geometric structure information of fault data, the local intra-class aggregation and global inter-class separability of the low-dimensional discriminative features are further improved. Finally, we provide an adaptive balance strategy for constructing a unified optimization model of ESBDP, which achieves the elastic balance between global and local features in the projection subspace. The diagnosis performance of the ESBDP algorithm is explored by two machinery fault cases of bearing and gearbox. Encouraging experimental results show that the algorithm can capture effective fault discriminative features and can improve the accuracy of fault diagnosis.

Funder

MaoyanZhang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3