Affiliation:
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract
Precision spindle and bearings are the key components in precision machine tools. These structures greatly affect the machining accuracy and service life of the machine tools. In this paper, considering the uncertainty of rolling elements when the bearings are working at high speed, a new 2D equivalent simulation model of angular contact ball bearing was established based on the general finite element software, Abaqus. Meanwhile, the equivalent material parameters of virtual bearing ball in this 2D model were obtained via a standard bearing stiffness test and a parametric inversed method. The time to calculate of this model is reduced by 200 times compared with the 3D bearing simulation model. Then, the 2D equivalent simulation model of the spindle was established based on the 2D bearing model, which is used to calculate the axial stiffness and maximum contact stress between bearing balls and inner/outer rings in different assembly parameters. The results show that the stiffness of the spindle increases slowly at first, but then increases rapidly to a peak value after the bearing inner spacer sleeve is in contact with the bearing inner ring, and finally tends to stable, with the preload of the spindle continuing to increase.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences Grant
Youth Innovation Promotion Association CAS
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering