An Indirect Procedure for Real-Time Monitoring the Neutral Conductor Deterioration in Three-Phase Distribution Networks

Author:

León-Martínez Vicente1ORCID,Montañana-Romeu Joaquín1ORCID,Peñalvo-López Elisa1ORCID,León-Vinet Amparo1ORCID,Cano-Martínez Jorge1ORCID

Affiliation:

1. Electrical Engineering Department, Universitat Politècnica de València, Camino de Vera 14, 46022 València, Spain

Abstract

An indirect procedure for real-time monitoring the neutral conductor condition in three-phase distribution networks, based on watching over the growth of a novel parameter (∆τ), has been described in this paper. The parameter ∆τ has been defined as the relationship between the neutral-displacement power and Buchholz’s apparent power measured at the fundamental frequency in the loads of the distribution networks for any condition of the neutral conductor and in its nominal conditions. The effectiveness of this procedure has been compared with other traditional indirect procedures, such as the surveillance of the RMS values of the line-to-neutral load voltages or their zero-sequence component. The practical application on a real distribution network reveals that the growth of the parameter ∆τ in the early stages of the breaking process of the neutral conductor follows a straight line whose equation is known for each length and section of that conductor, regardless of the loads and the voltage regulation of the transformer of the distribution network. This characteristic of the ∆τ parameter shows that the proposed procedure is suitable for monitoring neutral conductor deterioration and can be used for preventive maintenance of distribution networks.

Funder

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3