Affiliation:
1. Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
Abstract
This study focuses on training a custom, small Convolutional Neural Network (CNN) using a limited dataset through data augmentation that is aimed at developing weights for subsequent fine-tuning on specific defects, namely improperly polished aluminum surfaces. The objective is to adapt the network for use in computationally restricted environments. The methodology involves using two computers—a low-performance PC for network creation and initial testing and a more powerful PC for network training using the Darknet framework—after which the network is transferred back to the initial low-performance PC. The results demonstrate that the custom lightweight network suited for a low-performance PC effectively performs object detection under the described conditions. These findings suggest that using tailored lightweight networks for recognizing specific types of defects is feasible and warrants further investigation to enhance the industrial defect detection processes in limited computational settings. This approach highlights the potential for deploying AI-driven quality control in environments with constrained hardware capabilities.
Reference37 articles.
1. Garcia, M., Rauch, E., Salvalai, D., and Matt, D. (2021, January 7–11). AI-based human-robot cooperation for flexible multi-variant manufacturing. Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore, Singapore.
2. Cobots in knowledge work: Human—AI collaboration in managerial professions;Sowa;J. Bus. Res.,2021
3. Bohušík, M., Stenchlák, V., Císar, M., Bulej, V., Kuric, I., Dodok, T., and Bencel, A. (2023). Mechatronic Device Control by Artificial Intelligence. Sensors, 23.
4. Bhardwaj, A., Kishore, S., and Pandey, D.K. (2022). Artificial Intelligence in Biological Sciences. Life, 12.
5. Robotics and AI-Enabled On-Orbit Operations With Future Generation of Small Satellites;Nanjangud;Proc. IEEE,2018