Optimization Techniques in the Localization Problem: A Survey on Recent Advances

Author:

Stefanoni Massimo1ORCID,Sarcevic Peter2ORCID,Sárosi József2ORCID,Odry Akos2ORCID

Affiliation:

1. Doctoral School of Applied Informatics and Applied Mathematics, Obuda University, 1034 Budapest, Hungary

2. Department of Mechatronics and Automation, Faculty of Engineering, University of Szeged, 6725 Szeged, Hungary

Abstract

Optimization is a mathematical discipline or tool suitable for minimizing or maximizing a function. It has been largely used in every scientific field to solve problems where it is necessary to find a local or global optimum. In the engineering field of localization, optimization has been adopted too, and in the literature, there are several proposals and applications that have been presented. In the first part of this article, the optimization problem is presented by considering the subject from a purely theoretical point of view and both single objective (SO) optimization and multi-objective (MO) optimization problems are defined. Additionally, it is reported how local and global optimization problems can be tackled differently, and the main characteristics of the related algorithms are outlined. In the second part of the article, extensive research about local and global localization algorithms is reported and some optimization methods for local and global optimum algorithms, such as the Gauss–Newton method, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and so on, are presented; for each of them, the main concept on which the algorithm is based, the mathematical model, and an example of the application proposed in the literature for localization purposes are reported. Among all investigated methods, the metaheuristic algorithms, which do not exploit gradient information, are the most suitable to solve localization problems due to their flexibility and capability in solving non-convex and non-linear optimization functions.

Funder

National Research, Development, and Innovation Fund of Hungary

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3