The Simulation of Heat Supply System with a Scale Formation Factor to Enable Automation of Greenhouse Geothermal Heat Supply System

Author:

Korzhakov AlexeyORCID,Oskin Sergei,Korzhakov Valery,Korzhakova SvetlanaORCID

Abstract

This article presents the results of the simulation of an automatic control system for the heat supply of a greenhouse complex with a geothermal heat source, conducted in order to study the possibility of geothermal heat supply system automation. Scilab version 6.1 was used for simulation. Based on the results of the simulation, the optimal mode of the automation system function of the heat exchanger primary circuit was developed and implemented. Reagentless treatment of geothermal water in the heat supply system with an acoustic–magnetic device (designed and patented by the authors of this paper) can significantly reduce the intensity of scale formation in the heat exchanger and geothermal heat supply system equipment. It provides conditions for the automation of geothermal heat supply systems of greenhouses with a surface heat exchanger. Using an automation system allows greater accuracy and reliability in maintaining the required temperature regime (18–20 °C) in the greenhouse, reduces the frequency of system shutdown for unplanned cleaning of the heat exchanger and equipment, reduces the complexity of manual operations of heat exchanger and equipment maintenance (removal of sludge, scale) and reduces the economic costs of transportation and heat consumption.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference35 articles.

1. Research of the Possibility of Automation of Geothermal Heat Supply of Greenhouses with a Surface Heat Exchanger

2. Mathematical model for microclimate control in shed greenhouses. Gavrish. 2008, pp. 28–32http://samodelkin.komi.ru/doc/6.pdf

3. MICROCLIMATE CONTROL IN GREENHOUSES

4. Modeling of the climate for a greenhouse in the north-east of México;Leal;Ifac Proc.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3